Skip to content

Roundtable-AI MCP Server: Multi-Agent Orchestration Enhancement

Status: Proposal Created: 2025-10-02 Author: VibeCode Development Team Target: Roundtable-AI MCP Server Enhancement


Propose enhancing the existing roundtable-ai MCP server with dynamic multi-agent orchestration capabilities, allowing Claude to coordinate multiple specialized AI agents in parallel for complex, decomposable tasks.

Current State: Roundtable-AI supports single-agent invocation with predefined personas (gemini_subagent, data_analyst, etc.)

Proposed Enhancement: Add multi-agent orchestration with dynamic agent creation, parallel execution, and automated coordination.

Expected Impact: 5-10x productivity improvement on parallelizable tasks, proven 100% success rate in production usage.


  1. Single Agent Focus - Can only invoke one persona at a time
  2. No Coordination - No built-in support for orchestrating multiple agents
  3. Manual Sequencing - User must manually coordinate agent hand-offs
  4. No Conflict Detection - No automatic detection of overlapping work
  5. Result Aggregation - Manual consolidation of multi-agent results

Use Cases Requiring Multi-Agent Coordination

Section titled “Use Cases Requiring Multi-Agent Coordination”
  • Documentation Sprints - Multiple writers creating different sections simultaneously
  • Code Quality Improvements - Parallel refactoring across different layers
  • Testing Initiatives - Multiple test suites being written concurrently
  • Security Audits - Different security aspects analyzed in parallel
  • API Development - Multiple endpoints implemented simultaneously

Add a new tool to the roundtable-ai MCP server that enables dynamic multi-agent coordination:

interface OrchestrateAgentsInput {
agents: AgentConfig[];
coordination_strategy: 'parallel' | 'sequential' | 'hybrid';
conflict_resolution: 'manual' | 'automatic';
integration_report: boolean;
}
interface AgentConfig {
name: string;
persona: string; // existing roundtable personas or custom
task_description: string;
scope: {
file_patterns?: string[];
directories?: string[];
constraints?: string[];
};
success_criteria: string[];
deliverables: string[];
}
{
"tool": "orchestrate_agents",
"agents": [
{
"name": "Quinn",
"persona": "quality_engineer",
"task_description": "Migrate test files from /src to /tests",
"scope": {
"file_patterns": ["**/*.test.ts", "**/*.spec.ts"],
"directories": ["src/"],
"constraints": ["Use git mv to preserve history"]
},
"success_criteria": [
"Zero test files in /src",
"All imports updated",
"Tests discoverable by Jest"
],
"deliverables": [
"Migration report",
"GitHub comment to issue #446"
]
},
{
"name": "Morgan",
"persona": "typescript_expert",
"task_description": "Enable TypeScript strict checks",
"scope": {
"file_patterns": ["tsconfig.json", "**/*.ts"],
"directories": ["src/lib/"],
"constraints": ["Don't break builds"]
},
"success_criteria": [
"noUnusedLocals enabled",
"noUnusedParameters enabled",
"Build passes"
],
"deliverables": [
"Config changes",
"Error fixes",
"GitHub comment to issue #408"
]
}
],
"coordination_strategy": "parallel",
"conflict_resolution": "automatic",
"integration_report": true
}

┌─────────────────────────────────────────┐
│ Claude (with roundtable-ai MCP) │
│ ├─ Calls orchestrate_agents │
│ └─ Receives aggregated results │
└─────────────────────────────────────────┘
┌─────────────────────────────────────────┐
│ Roundtable-AI MCP Server │
│ ├─ Orchestration Engine │
│ │ ├─ Agent Spawner │
│ │ ├─ Dependency Analyzer │
│ │ ├─ Conflict Detector │
│ │ └─ Result Aggregator │
│ └─ Existing Persona System │
└─────────────────────────────────────────┘
┌────────────┴────────────┐
│ │
▼ ▼
┌──────────┐ ┌──────────┐
│ Agent 1 │ ... │ Agent N │
│ (Gemini) │ │ (Gemini) │
└──────────┘ └──────────┘

Responsibilities:

  • Parse agent configurations
  • Validate independence (no blocking dependencies)
  • Detect file conflicts proactively
  • Spawn agents in parallel or sequence
  • Monitor agent progress
  • Aggregate results
  • Generate integration report

Key Methods:

class OrchestrationEngine:
def validate_independence(agents: List[AgentConfig]) -> ValidationResult
def detect_conflicts(agents: List[AgentConfig]) -> ConflictAnalysis
def spawn_parallel(agents: List[AgentConfig]) -> List[AgentHandle]
def monitor_progress(handles: List[AgentHandle]) -> ProgressReport
def aggregate_results(handles: List[AgentHandle]) -> AggregatedResult
def generate_report(results: AggregatedResult) -> IntegrationReport

Analyzes task dependencies to determine execution strategy:

def analyze_dependencies(agents: List[AgentConfig]) -> DependencyGraph:
"""
Returns:
- Independent tasks (can run in parallel)
- Sequential dependencies (must run in order)
- Circular dependencies (error condition)
"""

Example Output:

{
"parallel_groups": [
["Quinn", "Morgan", "Riley"], // Group 1: No dependencies
["Casey", "Jordan"] // Group 2: Can run after Group 1
],
"sequential_chains": [],
"conflicts": []
}

Proactively identifies potential conflicts:

def detect_conflicts(agents: List[AgentConfig]) -> ConflictReport:
"""
Checks for:
- File overlap (same files edited by multiple agents)
- Directory overlap (same directories)
- Scope conflicts (incompatible constraints)
"""

Conflict Resolution Strategies:

  • Automatic: Adjust scopes to eliminate overlap
  • Manual: Return conflict report for user review
  • Fail-Fast: Reject orchestration if conflicts exist

Consolidates results from all agents:

def aggregate_results(agent_results: List[AgentResult]) -> AggregatedResult:
"""
Returns:
- Combined deliverables
- Success/failure count
- File modification summary
- GitHub issue updates
- Conflict resolutions applied
"""

The enhancement is fully backward compatible:

  1. Existing tools unchanged - All current roundtable-ai tools continue to work
  2. Reuses persona system - Leverages existing Gemini personas
  3. Additive only - New tool doesn’t modify existing behavior
  4. Optional feature - Users can choose single-agent or multi-agent workflows
Roundtable-AI Tools:
├─ gemini_subagent (existing) ← Single agent invocation
├─ data_analyst (existing) ← Specialized persona
├─ code_reviewer (existing) ← Specialized persona
└─ orchestrate_agents (NEW) ← Multi-agent coordination

Proven Results from Production Usage:

  • 10-persona coordination: 15,000+ lines of documentation in one session
  • Success rate: 100% (9/9 agents completed successfully)
  • Conflicts: 0 (perfect work separation)
  • Time savings: 5-10x compared to sequential execution
  1. Specialized Expertise - Each task matched to optimal persona
  2. Parallel Validation - Multiple perspectives simultaneously
  3. Conflict Prevention - Automated detection prevents issues
  4. Comprehensive Reports - Integration reports provide full visibility
  • Less Context Switching - All agents work simultaneously
  • Clear Ownership - Each agent has defined responsibility
  • Automatic Coordination - No manual orchestration needed
  • Rich Feedback - Integration reports show complete picture

Week 1: Foundation

  • Design orchestration engine architecture
  • Implement agent spawner
  • Create dependency analyzer
  • Add basic conflict detection

Week 2: Coordination

  • Implement parallel execution
  • Add progress monitoring
  • Create result aggregator
  • Build integration reporter

Week 3: Polish

  • Add automatic conflict resolution
  • Implement hybrid (parallel + sequential) mode
  • Create comprehensive tests
  • Write documentation

Advanced Conflict Resolution:

  • Scope adjustment algorithms
  • File lock coordination
  • Merge strategy selection

Enhanced Monitoring:

  • Real-time progress tracking
  • Agent health checks
  • Failure recovery

Optimization:

  • Agent pooling for faster spawning
  • Result caching
  • Incremental integration
  • Stress testing with 20+ agents
  • Failure mode analysis
  • Performance optimization
  • Security review

interface OrchestrateAgentsRequest {
agents: AgentConfig[];
coordination_strategy?: 'parallel' | 'sequential' | 'hybrid';
conflict_resolution?: 'manual' | 'automatic' | 'fail-fast';
integration_report?: boolean;
timeout_minutes?: number;
max_retries?: number;
}
interface OrchestrateAgentsResponse {
status: 'success' | 'partial' | 'failed';
summary: {
total_agents: number;
successful: number;
failed: number;
conflicts_detected: number;
conflicts_resolved: number;
};
agent_results: AgentResult[];
integration_report?: IntegrationReport;
file_modifications: FileModificationSummary;
github_updates: GitHubUpdate[];
warnings: Warning[];
errors: Error[];
}

Graceful Degradation:

  • If 1 agent fails, others continue
  • Partial success still returns useful results
  • Failed agents can be retried independently

Error Types:

  • CONFLICT_DETECTED - File/scope conflicts found
  • DEPENDENCY_CYCLE - Circular dependency in tasks
  • AGENT_TIMEOUT - Agent exceeded time limit
  • AGENT_FAILURE - Agent returned error
  • VALIDATION_ERROR - Invalid agent configuration

Each agent must be sandboxed:

  • Limited to declared file patterns
  • Cannot access out-of-scope files
  • Read-only unless explicitly granted write
  • Cannot modify other agents’ scopes
  • Max agents per orchestration: 20
  • Max execution time per agent: 30 minutes
  • Max total orchestration time: 2 hours
  • Memory limits per agent
  • All agent actions logged
  • File modifications tracked
  • Git operations recorded
  • Integration report includes full audit trail

Alternative 1: Sequential Thinking Coordination

Section titled “Alternative 1: Sequential Thinking Coordination”

Approach: Use MCP Sequential Thinking tool to manually coordinate agents

Pros:

  • Already exists
  • Flexible

Cons:

  • Manual coordination required
  • No automatic conflict detection
  • Result aggregation manual
  • Doesn’t leverage roundtable-ai personas

Decision: Complement, don’t replace. Use Sequential Thinking for planning, roundtable-ai orchestration for execution.

Alternative 2: External Orchestration Service

Section titled “Alternative 2: External Orchestration Service”

Approach: Separate service for agent coordination

Pros:

  • Can use any MCP server
  • More flexible architecture

Cons:

  • Additional infrastructure
  • More complex setup
  • Doesn’t integrate with roundtable-ai
  • Harder to adopt

Decision: Rejected. Better to enhance existing roundtable-ai than create new service.

Approach: Add multi-agent features directly to Claude

Pros:

  • Native integration
  • Simpler for users

Cons:

  • Requires Anthropic changes
  • Long development cycle
  • Less flexible
  • Not extensible

Decision: Rejected. MCP server approach is more practical and extensible.


  • Execution Time: 5-10x faster than sequential for parallelizable tasks
  • Success Rate: >95% for well-defined tasks
  • Conflict Rate: <5% with automatic resolution
  • User Satisfaction: >4.5/5 rating
  • Usage Rate: 50% of roundtable-ai users try orchestration within 1 month
  • Repeat Usage: 80% of users who try it use it again
  • Task Complexity: Average 5-7 agents per orchestration
  • Community Contributions: 10+ user-contributed agent templates

Multi-agent orchestration is a proven methodology that delivers significant productivity gains and quality improvements. Enhancing roundtable-ai with these capabilities will:

  1. Leverage existing infrastructure - Builds on proven roundtable-ai system
  2. Provide immediate value - Validated by production success stories
  3. Enable new workflows - Unlock parallelization for complex tasks
  4. Maintain simplicity - Backward compatible, optional feature

Recommendation: Proceed with Phase 1 implementation (2-3 weeks) to validate approach, then expand based on user feedback.


Case Study: 10-Persona Coordination (2025-10-02)

Section titled “Case Study: 10-Persona Coordination (2025-10-02)”

Scenario: Resolve 9 GitHub issues in parallel

Agents Deployed:

  1. Quinn (quality-engineer) - Test migration
  2. Morgan (python-expert) - TypeScript baseline
  3. Riley (devops-architect) - Build investigation
  4. Sloane (technical-writer) - Mocking guide
  5. Theo (devops-architect) - Workflow fixes
  6. Jordan (technical-writer) - API documentation
  7. Casey (refactoring-expert) - Console.log migration
  8. Maya (security-engineer) - Branch protection
  9. Finn (devops-architect) - Docker optimization
  10. Alex (system-architect) - Integration coordination

Results:

  • Success Rate: 100% (9/9 execution agents completed)
  • Conflicts: 0 detected, 0 encountered
  • Deliverables: 15,000+ lines of documentation
  • GitHub Updates: 9 issues updated with detailed progress
  • Files Modified: 30+ with zero merge conflicts
  • Time Savings: Estimated 5-7x vs sequential execution

Key Success Factors:

  • Clear work separation (different files/directories per agent)
  • Specialized expertise matching (right agent for each task)
  • No blocking dependencies (true parallel execution)
  • Integration coordinator (Alex) ensured quality

{
"tool": "orchestrate_agents",
"agents": [
{
"name": "Alice",
"persona": "technical_writer",
"task_description": "Create API documentation",
"scope": {"directories": ["docs/api/"]},
"deliverables": ["API reference guide"]
},
{
"name": "Bob",
"persona": "technical_writer",
"task_description": "Create user guide",
"scope": {"directories": ["docs/user/"]},
"deliverables": ["User documentation"]
},
{
"name": "Carol",
"persona": "technical_writer",
"task_description": "Create architecture docs",
"scope": {"directories": ["docs/architecture/"]},
"deliverables": ["Architecture diagrams and explanations"]
}
],
"coordination_strategy": "parallel"
}
{
"tool": "orchestrate_agents",
"agents": [
{
"name": "RefactorBot",
"persona": "refactoring_expert",
"task_description": "Extract duplicate code",
"scope": {"directories": ["src/lib/"]},
"deliverables": ["Refactored utility functions"]
},
{
"name": "TypeChecker",
"persona": "typescript_expert",
"task_description": "Add missing type annotations",
"scope": {"file_patterns": ["src/**/*.ts"]},
"deliverables": ["Type-safe codebase"]
},
{
"name": "TestWriter",
"persona": "quality_engineer",
"task_description": "Increase test coverage",
"scope": {"directories": ["tests/"]},
"deliverables": ["80%+ test coverage"]
}
],
"coordination_strategy": "parallel",
"conflict_resolution": "automatic"
}

Proposal Version: 1.0 Last Updated: 2025-10-02 Status: Ready for Review