genai integration
🏗️ GenAI Integration Architecture for VibeCode
Section titled “🏗️ GenAI Integration Architecture for VibeCode”Based on: Current VibeCode architecture diagram + License sweep findings
Goal: Strategic integration of MIT/BSD GenAI libraries into existing flow
🎯 Current Architecture Analysis
Section titled “🎯 Current Architecture Analysis”Template Picker → VSCode Core → Code-Server (Cloud IDE) → Preview/Deployment ↓ ↓ ↓ ↓Marketplace Extensions AI Agent Panel Observability APIs Workflow ChatGPT/Ollama Datadog/Vector🚀 Enhanced Architecture with GenAI Libraries
Section titled “🚀 Enhanced Architecture with GenAI Libraries”Phase 1: Core AI Infrastructure (Immediate)
Section titled “Phase 1: Core AI Infrastructure (Immediate)”graph TD A[Template Picker] --> B[AI-Enhanced VSCode Core] B --> C[Ollama Local LLM] B --> D[Pydantic AI Agents] B --> E[Code-Server Cloud IDE] E --> F[LanceDB Vector Search] E --> G[AI Agent Panel Enhanced] G --> H[Preview Server] H --> I[Deployment CLI]Component Enhancement Map
Section titled “Component Enhancement Map”1. Template Picker → AI-Powered Template Selection
Section titled “1. Template Picker → AI-Powered Template Selection”// Integration: Pydantic AI + LanceDBclass AITemplatePicker { async suggestTemplates(description: string) { // Semantic search through template library const embeddings = await lanceDB.search(description);
// AI agent validates and ranks suggestions const agent = new PydanticAgent('ollama:codellama'); return agent.run({ prompt: "Rank these templates for: " + description, templates: embeddings, resultType: TemplateRanking }); }}2. VSCode Core → AI-Native Code Editor
Section titled “2. VSCode Core → AI-Native Code Editor”// Integration: Ollama + Enhanced AI Clientclass AICodeAssistant { constructor() { this.localLLM = new OllamaClient('http://localhost:11434'); this.cloudLLM = new EnhancedAIClient(); // Fallback }
async explainCode(codeSnippet: string) { try { // Try local first (privacy + speed) return await this.localLLM.generate({ model: 'codellama', prompt: `Explain this code:\n${codeSnippet}` }); } catch { // Fallback to cloud return await this.cloudLLM.generateText(codeSnippet); } }}3. AI Agent Panel → Multi-Agent Workflow System
Section titled “3. AI Agent Panel → Multi-Agent Workflow System”# Integration: Pydantic AI + Langroid for complex workflowsfrom pydantic_ai import Agentfrom langroid import ChatAgent, Task
class CodeGenerationWorkflow: def __init__(self): self.architect = Agent('ollama:codellama', system_prompt="You are a software architect") self.coder = Agent('ollama:codellama', system_prompt="You are a senior developer") self.reviewer = Agent('ollama:codellama', system_prompt="You are a code reviewer")
async def generate_component(self, requirements: str): # Multi-agent workflow architecture = await self.architect.run(f"Design architecture for: {requirements}") code = await self.coder.run(f"Implement: {architecture.data}") review = await self.reviewer.run(f"Review this code: {code.data}")
return ComponentResult( architecture=architecture.data, code=code.data, review=review.data )4. Component Library → Semantic Component Discovery
Section titled “4. Component Library → Semantic Component Discovery”// Integration: LanceDB + Radient for multi-modal searchclass SemanticComponentLibrary { async findComponents(query: string, designImage?: File) { let searchVector;
if (designImage) { // Multi-modal: image to component matching searchVector = await radient.imageVectorizer().vectorize(designImage); } else { // Text-based semantic search searchVector = await lanceDB.textSearch(query); }
const components = await this.vectorDB.search(searchVector).limit(10); return components.map(c => ({ name: c.name, code: c.code, similarity: c.similarity, preview: c.preview })); }}🔧 Integration Points by Library
Section titled “🔧 Integration Points by Library”Ollama (Apache 2.0) - Local LLM Backbone
Section titled “Ollama (Apache 2.0) - Local LLM Backbone”- Where: AI Agent Panel, Code explanation, Auto-complete
- Benefit: Privacy-first, offline capable, cost-effective
- Implementation:
# Docker integrationdocker run -d -v ollama:/root/.ollama -p 11434:11434 ollama/ollamadocker exec -it ollama ollama pull codellamaPydantic AI (MIT) - Type-Safe Agent Framework
Section titled “Pydantic AI (MIT) - Type-Safe Agent Framework”- Where: AI Agent Panel, Project scaffolding, Code generation
- Benefit: Structured outputs, validation, enterprise-ready
- Implementation:
# Type-safe project generationclass ProjectSpec(BaseModel): framework: Literal['react', 'vue', 'angular'] components: List[ComponentSpec] dependencies: List[str]
agent = Agent('ollama:codellama', result_type=ProjectSpec)project = agent.run_sync("Create a dashboard with charts and tables")# Guaranteed valid ProjectSpec objectLanceDB (Apache 2.0) - Vector Search Engine
Section titled “LanceDB (Apache 2.0) - Vector Search Engine”- Where: Component Library, Code search, Template discovery
- Benefit: 100x faster vector ops, versioned embeddings
- Implementation:
// Semantic code search across entire codebaseconst db = await lancedb.connect('./vibecode-vectors');const codeTable = db.openTable('code_embeddings');
const searchResults = await codeTable .search("authentication middleware") .limit(5) .toArray();Radient (BSD-2-Clause) - Multi-Modal Processing
Section titled “Radient (BSD-2-Clause) - Multi-Modal Processing”- Where: Design-to-code, Image analysis, Multi-modal search
- Benefit: Images/audio/graphs → embeddings
- Implementation:
from radient import image_vectorizer, text_vectorizer
# Convert design mockup to searchable embeddingimage_vec = image_vectorizer().vectorize("./design-mockup.png")text_vec = text_vectorizer().vectorize("user dashboard component")
# Find similar components across modalitiessimilar_components = vector_db.hybrid_search(image_vec, text_vec)🏃♂️ Implementation Roadmap
Section titled “🏃♂️ Implementation Roadmap”Week 1-2: Foundation
Section titled “Week 1-2: Foundation”- Set up Ollama in development environment
- Integrate Pydantic AI for basic code generation
- Prototype LanceDB for component search
Week 3-4: Core Features
Section titled “Week 3-4: Core Features”- Enhance AI Agent Panel with local LLM support
- Add semantic search to Component Library
- Implement fallback strategy (local → cloud)
Week 5-8: Advanced Capabilities
Section titled “Week 5-8: Advanced Capabilities”- Multi-modal support with Radient
- Multi-agent workflows for complex generation
- Performance optimization and caching
Week 9-12: Production Ready
Section titled “Week 9-12: Production Ready”- Enterprise deployment options
- Advanced observability integration
- Security hardening and compliance
🎨 User Experience Enhancements
Section titled “🎨 User Experience Enhancements”Before: Manual Template Selection
Section titled “Before: Manual Template Selection”User → Browse templates → Pick manually → Start codingAfter: AI-Powered Development
Section titled “After: AI-Powered Development”User → Describe what they want → AI suggests templates + components → Auto-generates scaffolding → AI assists with coding → Real-time code review → Deploy with AI optimizationsNew Capabilities:
Section titled “New Capabilities:”-
“Build me a dashboard with user analytics”
- AI understands requirements
- Suggests relevant templates
- Generates component structure
- Provides implementation guidance
-
Design Upload → Code
- User uploads Figma/Sketch design
- Radient processes image
- LanceDB finds similar components
- Pydantic AI generates React code
-
Semantic Code Search
- “Find all authentication components”
- “Show me pagination examples”
- “Components similar to this design”
🔒 Security & Privacy Architecture
Section titled “🔒 Security & Privacy Architecture”Data Flow Security
Section titled “Data Flow Security”Sensitive Code → Local Ollama (never leaves machine)Public Templates → Cloud AI (OpenAI/Anthropic)User Uploads → Local Processing → Encrypted StoragePrivacy Tiers:
Section titled “Privacy Tiers:”- Tier 1: Public code, templates → Cloud AI
- Tier 2: User projects → Local AI only
- Tier 3: Enterprise code → Air-gapped local deployment
📊 Performance Considerations
Section titled “📊 Performance Considerations”Local vs Cloud Tradeoffs
Section titled “Local vs Cloud Tradeoffs”| Aspect | Local (Ollama) | Cloud (OpenAI) |
|---|---|---|
| Privacy | ✅ Complete | ❌ Limited |
| Cost | ✅ Free after setup | ❌ Per-token |
| Speed | ⚡ 2-5s response | ⚡ 1-3s response |
| Quality | 🟡 Good for code | ✅ Excellent |
| Offline | ✅ Works offline | ❌ Requires internet |
Optimization Strategy:
Section titled “Optimization Strategy:”- Hot path: Common operations use local Ollama
- Cold path: Complex reasoning uses cloud APIs
- Hybrid: Start local, escalate to cloud if needed
🚀 Competitive Advantages
Section titled “🚀 Competitive Advantages”vs GitHub Copilot:
Section titled “vs GitHub Copilot:”- ✅ Privacy-first: Code never leaves local environment
- ✅ Cost-effective: No per-seat licensing
- ✅ Customizable: Domain-specific model fine-tuning
vs Cursor/Windsurf:
Section titled “vs Cursor/Windsurf:”- ✅ Multi-modal: Design → Code capabilities
- ✅ Semantic search: Find components by meaning
- ✅ End-to-end: Template → Deploy workflow
vs Replit/CodeSandbox:
Section titled “vs Replit/CodeSandbox:”- ✅ Local deployment: Run on-premise
- ✅ Enterprise ready: GDPR/SOC2 compliant
- ✅ Extensible: Plugin architecture
Next Steps: Start with Ollama + Pydantic AI integration in the AI Agent Panel, then progressively enhance each component with semantic capabilities. All libraries chosen have enterprise-friendly licenses and production-proven track records.