Skip to content

genai integration

🏗️ GenAI Integration Architecture for VibeCode

Section titled “🏗️ GenAI Integration Architecture for VibeCode”

Based on: Current VibeCode architecture diagram + License sweep findings
Goal: Strategic integration of MIT/BSD GenAI libraries into existing flow

Template Picker → VSCode Core → Code-Server (Cloud IDE) → Preview/Deployment
↓ ↓ ↓ ↓
Marketplace Extensions AI Agent Panel Observability
APIs Workflow ChatGPT/Ollama Datadog/Vector

🚀 Enhanced Architecture with GenAI Libraries

Section titled “🚀 Enhanced Architecture with GenAI Libraries”

Phase 1: Core AI Infrastructure (Immediate)

Section titled “Phase 1: Core AI Infrastructure (Immediate)”
graph TD
A[Template Picker] --> B[AI-Enhanced VSCode Core]
B --> C[Ollama Local LLM]
B --> D[Pydantic AI Agents]
B --> E[Code-Server Cloud IDE]
E --> F[LanceDB Vector Search]
E --> G[AI Agent Panel Enhanced]
G --> H[Preview Server]
H --> I[Deployment CLI]

1. Template PickerAI-Powered Template Selection

Section titled “1. Template Picker → AI-Powered Template Selection”
// Integration: Pydantic AI + LanceDB
class AITemplatePicker {
async suggestTemplates(description: string) {
// Semantic search through template library
const embeddings = await lanceDB.search(description);
// AI agent validates and ranks suggestions
const agent = new PydanticAgent('ollama:codellama');
return agent.run({
prompt: "Rank these templates for: " + description,
templates: embeddings,
resultType: TemplateRanking
});
}
}
// Integration: Ollama + Enhanced AI Client
class AICodeAssistant {
constructor() {
this.localLLM = new OllamaClient('http://localhost:11434');
this.cloudLLM = new EnhancedAIClient(); // Fallback
}
async explainCode(codeSnippet: string) {
try {
// Try local first (privacy + speed)
return await this.localLLM.generate({
model: 'codellama',
prompt: `Explain this code:\n${codeSnippet}`
});
} catch {
// Fallback to cloud
return await this.cloudLLM.generateText(codeSnippet);
}
}
}

3. AI Agent PanelMulti-Agent Workflow System

Section titled “3. AI Agent Panel → Multi-Agent Workflow System”
# Integration: Pydantic AI + Langroid for complex workflows
from pydantic_ai import Agent
from langroid import ChatAgent, Task
class CodeGenerationWorkflow:
def __init__(self):
self.architect = Agent('ollama:codellama', system_prompt="You are a software architect")
self.coder = Agent('ollama:codellama', system_prompt="You are a senior developer")
self.reviewer = Agent('ollama:codellama', system_prompt="You are a code reviewer")
async def generate_component(self, requirements: str):
# Multi-agent workflow
architecture = await self.architect.run(f"Design architecture for: {requirements}")
code = await self.coder.run(f"Implement: {architecture.data}")
review = await self.reviewer.run(f"Review this code: {code.data}")
return ComponentResult(
architecture=architecture.data,
code=code.data,
review=review.data
)

4. Component LibrarySemantic Component Discovery

Section titled “4. Component Library → Semantic Component Discovery”
// Integration: LanceDB + Radient for multi-modal search
class SemanticComponentLibrary {
async findComponents(query: string, designImage?: File) {
let searchVector;
if (designImage) {
// Multi-modal: image to component matching
searchVector = await radient.imageVectorizer().vectorize(designImage);
} else {
// Text-based semantic search
searchVector = await lanceDB.textSearch(query);
}
const components = await this.vectorDB.search(searchVector).limit(10);
return components.map(c => ({
name: c.name,
code: c.code,
similarity: c.similarity,
preview: c.preview
}));
}
}
  • Where: AI Agent Panel, Code explanation, Auto-complete
  • Benefit: Privacy-first, offline capable, cost-effective
  • Implementation:
Terminal window
# Docker integration
docker run -d -v ollama:/root/.ollama -p 11434:11434 ollama/ollama
docker exec -it ollama ollama pull codellama

Pydantic AI (MIT) - Type-Safe Agent Framework

Section titled “Pydantic AI (MIT) - Type-Safe Agent Framework”
  • Where: AI Agent Panel, Project scaffolding, Code generation
  • Benefit: Structured outputs, validation, enterprise-ready
  • Implementation:
# Type-safe project generation
class ProjectSpec(BaseModel):
framework: Literal['react', 'vue', 'angular']
components: List[ComponentSpec]
dependencies: List[str]
agent = Agent('ollama:codellama', result_type=ProjectSpec)
project = agent.run_sync("Create a dashboard with charts and tables")
# Guaranteed valid ProjectSpec object

LanceDB (Apache 2.0) - Vector Search Engine

Section titled “LanceDB (Apache 2.0) - Vector Search Engine”
  • Where: Component Library, Code search, Template discovery
  • Benefit: 100x faster vector ops, versioned embeddings
  • Implementation:
// Semantic code search across entire codebase
const db = await lancedb.connect('./vibecode-vectors');
const codeTable = db.openTable('code_embeddings');
const searchResults = await codeTable
.search("authentication middleware")
.limit(5)
.toArray();

Radient (BSD-2-Clause) - Multi-Modal Processing

Section titled “Radient (BSD-2-Clause) - Multi-Modal Processing”
  • Where: Design-to-code, Image analysis, Multi-modal search
  • Benefit: Images/audio/graphs → embeddings
  • Implementation:
from radient import image_vectorizer, text_vectorizer
# Convert design mockup to searchable embedding
image_vec = image_vectorizer().vectorize("./design-mockup.png")
text_vec = text_vectorizer().vectorize("user dashboard component")
# Find similar components across modalities
similar_components = vector_db.hybrid_search(image_vec, text_vec)
  1. Set up Ollama in development environment
  2. Integrate Pydantic AI for basic code generation
  3. Prototype LanceDB for component search
  1. Enhance AI Agent Panel with local LLM support
  2. Add semantic search to Component Library
  3. Implement fallback strategy (local → cloud)
  1. Multi-modal support with Radient
  2. Multi-agent workflows for complex generation
  3. Performance optimization and caching
  1. Enterprise deployment options
  2. Advanced observability integration
  3. Security hardening and compliance
User → Browse templates → Pick manually → Start coding
User → Describe what they want → AI suggests templates + components
→ Auto-generates scaffolding → AI assists with coding
→ Real-time code review → Deploy with AI optimizations
  1. “Build me a dashboard with user analytics”

    • AI understands requirements
    • Suggests relevant templates
    • Generates component structure
    • Provides implementation guidance
  2. Design Upload → Code

    • User uploads Figma/Sketch design
    • Radient processes image
    • LanceDB finds similar components
    • Pydantic AI generates React code
  3. Semantic Code Search

    • “Find all authentication components”
    • “Show me pagination examples”
    • “Components similar to this design”
Sensitive Code → Local Ollama (never leaves machine)
Public Templates → Cloud AI (OpenAI/Anthropic)
User Uploads → Local Processing → Encrypted Storage
  • Tier 1: Public code, templates → Cloud AI
  • Tier 2: User projects → Local AI only
  • Tier 3: Enterprise code → Air-gapped local deployment
AspectLocal (Ollama)Cloud (OpenAI)
Privacy✅ Complete❌ Limited
Cost✅ Free after setup❌ Per-token
Speed⚡ 2-5s response⚡ 1-3s response
Quality🟡 Good for code✅ Excellent
Offline✅ Works offline❌ Requires internet
  • Hot path: Common operations use local Ollama
  • Cold path: Complex reasoning uses cloud APIs
  • Hybrid: Start local, escalate to cloud if needed
  • Privacy-first: Code never leaves local environment
  • Cost-effective: No per-seat licensing
  • Customizable: Domain-specific model fine-tuning
  • Multi-modal: Design → Code capabilities
  • Semantic search: Find components by meaning
  • End-to-end: Template → Deploy workflow
  • Local deployment: Run on-premise
  • Enterprise ready: GDPR/SOC2 compliant
  • Extensible: Plugin architecture

Next Steps: Start with Ollama + Pydantic AI integration in the AI Agent Panel, then progressively enhance each component with semantic capabilities. All libraries chosen have enterprise-friendly licenses and production-proven track records.